Solution Error Modelling, Inverse Problems, and Uncertainty Quantification

Mike Christie
Heriot-Watt University

Co-workers:

Alannah O'Sullivan, Heriot-Watt Dave Sharp, Los Alamos National Laboratory

Introduction

How to Determine Likelihood

 Likelihood is probability of difference between observation and model

$$obs - sim = (obs - true) - (sim - true)$$

$$= err_{obs} - err_{sim}$$

 Likelihood is the probability that the observed error and the model/simulation error add (subtract) to give the discrepancy

Detail in Models

- Many approaches use simple models to get approximate match and then add detail
- Examples
 - Increased physics (eg coupling particles with continuum approaches, heat flux in ICF)
 - Mesh resolution (coarse meshes may damp out physics that needs certain level of resolution)

Simulation Errors

Assume a model

$$P = f_M (p_1, \dots, p_n, \theta_1, \dots \theta_k)$$

- $-p_1,...,p_n$ are parameters that are varied
- $-\theta_{l}, \dots \theta_{k}$ are unknown initial conditions or parameters describing additional physics (or sub-grid physics)
- Simulator prediction

$$P_S = f_S(p_1, \dots, p_n, \theta_1, \dots \theta_k, \Delta x, \Delta t, \dots)$$

Error

$$e_{S} = f_{M}\left(p_{1}, \dots, p_{n}, \overline{\theta_{1}}, \dots \overline{\theta_{k}}\right) - f_{S}\left(p_{1}, \dots, p_{n}, \theta_{1}, \dots \theta_{k}, \Delta x, \Delta t, \dots\right)$$

Calibration with Coarse Models

 Build response surface for difference between 'fine' and 'coarse' models

- calculated error
- → interpolated error

One Parameter Example

• See Los Alamos Science, vol 29

Calculate Time Varying Solution Errors

$$e_i = FG_i - CG_i$$

$$\overline{e} = \frac{1}{n} \sum_{i=1}^{n} e_i$$

Determine Covariance Structure

$$C_{se}(s,t) = \frac{1}{n-1} \sum_{j=1}^{n} \left(e_j(t) - \overline{e}(t) \right) \left(e_j(s) - \overline{e}(s) \right)$$

Interpolate for Mean Error and Covariance

Example:

Linear interpolation for mean error and covariance

More sophisticated scheme yields minor improvements

Results

True oil viscosity, $\mu = 13$

Maximum likelihood, σ =12.5

Effect of bias significantly reduced

How Accurate is the Error Model?

Likelihood curves

Prediction

Alternative Interpolation Approach

- Based on Kennedy & O'Hagan (2001)
 - Error depends on unknown parameters and independent variables in specific way
 - Discrepancy function only of independent variables
 - Described in *J. Roy. Stat. Soc. B*, 2001

Kennedy and O'Hagan Approach

$$z_i = \rho \eta(x_i, \theta) + \delta(x_i) + e_i$$

 \mathcal{Z}_i observations

 ρ scalar

 η simulator

 \mathcal{X}_i variable input

heta history match input

 δ model inadequacy

 e_i observation error

$$\varsigma(x_i) = \rho \eta(x_i, \theta) + \delta(x_i)$$
 truth

Errors for Varying Grid Sizes

• 128x96=12288 cells (fine)

64x48 = 3072 cells

32x24 = 768 cells

16x12 = 192 cells

Perm:

- Mean 1
- Var in log 0. 5
- Cx 0.2 Cy 0.05

Variability in Solution

Saturation Plots

Grid 128x96

Grid 32x24

Solution as a Function of Grid Size

Error as a Function of Grid Size

E = FG - CG

Fine grid is 128x96

Error as a Function of Solution

$$e(x_i, \theta) = (\rho - 1)\eta(x_i, \theta) + \delta(x_i)$$

 θ fixed

Determining Parameterized Fit

Determining Parameterized Fit: Slope

Viscosity constant

Determining Model Inadequacy

Viscosity = 5
Grid 16x12

Model Inadequacy with Grid Size

Viscosity = 5

Error Modelling for the Lorenz Equations

- Lorenz equations are a simple model for chaotic convective flows in the atmosphere
- Lorenz equations

$$\frac{dx}{dt} = \sigma(y - x) \qquad \sigma = 10$$

$$\rho = 28$$

$$\frac{dy}{dt} = x(\rho - z) - y \qquad \beta = 8/3$$

$$\frac{dx}{dt} = xy - \beta z$$

- Model error
 - Use wrong value of ρ = 28.1
 - Match for σ and β

Lorenz Equations Time Series – Exact Model

Error: Exact - Wrong Model

Misfit Cross Section for Wrong Model

Likelihood cross section – wrong model

• True values: $\beta = 8/3, \sigma = 10$

Likelihood Plot with and without Error Model

Error Model – 3 x 3 Base Points

Interpolated Errors – 3 x 3 grid

Interpolated Errors – 2 x 2 grid

Error Model – 2 x 2 Base Points

Summary

- Solution Error Models
 - Compute errors due to known effects
 - Sub-grid physics
 - Inadequate resolution
 - Function of unknown parameters and independent variables
 - Practical issue
 - Need to compute error model with only limited number of solves of fine model